Thermionic and Photo-Excited Electron Emission for Energy-Conversion Processes

نویسندگان

  • Patrick T. McCarthy
  • Ronald G. Reifenberger
  • Timothy S. Fisher
چکیده

*Correspondence: Timothy S. Fisher , Birck Nanotechnology Center, 1205 West State Street, West Lafayette, IN 47907, USA e-mail: [email protected] This article describes advances in thermionic and photo-emission materials and applications dating back to the work on thermionic emission by Guthrie (1873) and the photoelectric effect by Hertz (1893). Thermionic emission has been employed for electron beam generation from Edison’s work with the light bulb to modern day technologies such as scanning and transmission electron microscopy. The photoelectric effect has been utilized in common devices such as cameras and photocopiers while photovoltaic cells continue to be widely successful and further researched. Limitations in device efficiency and materials have thus far restricted large-scale energy generation sources based on thermionic and photoemission. However, recent advances in the fabrication of nanoscale emitters suggest promising routes for improving both thermionic and photo-enhanced electron emission along with newly developed research concepts, e.g., photonically enhanced thermionic emission. However, the abundance of new emitter materials and reduced dimensions of some nanoscale emitters increases the complexity of electron-emission theory and engender new questions related to the dimensionality of the emitter. This work presents derivations of basic two and three-dimensional thermionic and photo-emission theory along with comparisons to experimentally acquired data. The resulting theory can be applied to many different material types regardless of composition, bulk, and surface structure.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Competitive ionization processes of anthracene excited with a femtosecond pulse in the multi-photon ionization regime.

To clarify the ionization mechanism of large molecules under multi-photon ionization conditions, photo-electron spectroscopic studies on anthracene have been performed with electron imaging technique. Electron kinetic energy distributions below a few eV reveal that three kinds of ionization channels coexist, viz., vertical ionization, ionization from Rydberg states, and thermionic hot electron ...

متن کامل

Solar energy conversion with photon-enhanced thermionic emission

Photon-enhanced thermionic emission (PETE) converts sunlight to electricity with the combined photonic and thermal excitation of charge carriers in a semiconductor, leading to electron emission over a vacuum gap. Theoretical analyses predict conversion efficiency that can match, or even exceed, the efficiency of traditional solar thermal and photovoltaic converters. Several materials have been ...

متن کامل

Thermionic emission from surface-terminated nanocrystalline diamond

Thermionic electron emission forms the basis of both electron sources for a variety of applications and a direct energy conversion process that is compact and scalable. The present study characterizes thermionic emission from boron-doped nanocrystalline diamond films with hydrogen and nitrophenyl surface termination layers. A hemispherical energy analyzer was used to measure electron energy dis...

متن کامل

Monte Carlo simulation of solid-state thermionic energy conversion devices based on non-planar heterostructure interfaces

In this paper, electron emission from non-planar potential barrier structures is analyzed using a Monte Carlo electron transport model. Compared to the planar structures, about twice bigger emission current can be achieved for the non-planar tall barriers. The thermionic emission enhancement is attributed to combined effects of increased effective interface area and reduced probability of total...

متن کامل

Solid-State and Vacuum Thermionic Energy Conversion

A brief overview of the research activities at the Thermionic Energy Conversion (TEC) Center is given. The goal is to achieve direct thermal to electric energy conversion with >20% efficiency and >1W/cm power density at a hot side temperature of 300-650C. Thermionic emission in both vacuum and solid-state devices is investigated. In the case of solid-state devices, hot electron filtering using ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014